Bound Layers “Cloak” Nanoparticles in Strongly Interacting Polymer Nanocomposites

Francis W. Starr, Jack F. Douglas, Dong Meng, and Sanat K. Kumar

ABSTRACT: Polymer–nanoparticle (NP) interfacial interactions are expected to strongly influence the properties of nanocomposites, but surprisingly, experiments often report small or no changes in the glass transition temperature, T_g. To understand this paradoxical situation, we simulate nanocomposites over a broad range of polymer–NP interaction strengths, ε. When ε is stronger than the polymer–polymer interaction, a distinct relaxation that is slower than the main α-relaxation emerges, arising from an adsorbed “bound” polymer layer near the NP surface. This bound layer “cloaks” the NPs, so that the dynamics of the matrix polymer are largely unaffected. Consequently, T_g, defined from the temperature dependence of the routinely measured thermodynamics or the polymer matrix relaxation is nearly independent of ε, in accord with many experiments. Apparently, quasi-thermodynamic measurements do not reliably reflect dynamical changes in the bound layer, which alter the overall composite dynamics. These findings clarify the relation between quasi-thermodynamic T_g measurements and nanocomposite dynamics, and should also apply to thin polymer films.

KEYWORDS: polymer nanocomposite, glass transition, interfacial dynamics, bound polymer

The influence of geometric confinement on the glass transition temperature (T_g) of small molecules and polymers has been intensively investigated and discussed. The prevailing view is that surface interactions play a critical role in determining the sign and magnitude of the shift in T_g due to geometrical confinement or effective confinement through the addition of nanoparticles (NP). In particular, strong, favorable interactions are thought to increase T_g while weak or unfavorable interactions decrease T_g. Support for this picture comes from molecular simulations showing that T_g should increase as the attractive polymer–surface interactions become stronger. On the other hand, a number of recent experimental investigations report negligible changes in T_g in polymer nanocomposites (PNCs), even when the polymer–NP interaction is so strong that a large shift might be expected. For example, Kumar and co-workers found that the T_g of three different polymers were essentially unaffected by the presence of varying amounts of strongly interacting silica NPs. Sokolov and co-workers confirmed these findings, and their results suggest that surface chains relax on a time scale that can be several orders of magnitude slower than the bulk chains. Indeed, in the limit of strongly favorable polymer–NP interactions, experimental measurements indicate the presence of an interfacial polymer layer with a substantially slower relaxation. In the limit of irreversible adsorption, it has been suggested that the T_g changes can be related to the amount of adsorbed polymer. The precise role of this “bound” layer on nanocomposite dynamics, often quantified by T_g, remains unclear.

Here, we investigate the conditions under which a distinct interfacial bound layer appears, how it is manifest in the nanocomposite equilibrium relaxation, and how it impacts thermodynamic and dynamic methods to define T_g which sometimes decouple under confinement. We find that when the polymer–NP interaction strength ε exceeds the polymer–polymer interaction strength, a distinct relaxation at very large time develops associated with the interfaccial bound polymer. The NPs effectively “cloak” themselves in this bound layer, making standard quasi-thermodynamic and dynamic estimates of T_g which primarily weight the matrix chains, insensitive to ε.
The bound chains also affect the overall relaxation of the nanocomposite, but care is required to separate the matrix and bound components of the relaxation. These results demonstrate that, while the dynamics of the nanocomposites are indeed greatly altered by strongly interacting NPs, commonly employed \(T_g \) measurements often do not reflect these changes because the matrix and the interfacial dynamics effectively decouple.

RESULTS AND DISCUSSION

Our results are based on coarse-grained molecular simulations of an icosahedral NP with variable polymer–NP interaction strength in a dense melt of unentangled polymer chains of 20 monomers in length; the behavior of this model has been described in several earlier studies.\(^{10,27,28}\) In real units, the NP diameter maps to \(\approx 15 \) nm, and the loading fraction is \(\approx 5\% \). The Methods section and refs 10 and 28 provide further technical details.

We first characterize the spatial variation of composite dynamics via the time dependence of the self-intermediate scattering function,

\[
F_{i}(q, t) = \frac{1}{N} \sum_{j=0}^{N} e^{i q \cdot (r_j(t) - r_j(0))}
\]

(1)

at a \(q \) value corresponding to the structure factor maximum. To study the dependence of relaxation on distance from the NP, we separate \(F_{i}(q, t) \) into “layers” of thickness \(0.5\sigma \) (where \(\sigma \) is monomer diameter), based on monomer distance from the NP. Figure 1a,b shows the expected behavior for the distance dependence of the relaxation of \(F_{i}(q, t) \); namely, polymer relaxation near the NP surface is substantially enhanced for weak NP–polymer interactions or substantially slowed for strong interactions. The full time dependence in each layer can be described by

\[
F_{i}(q, t) = (1 - A) e^{-t/\tau_{s}} + A e^{-(t/\xi)^{2}}
\]

(2)

where the short vibrational relaxation time scale, \(\tau_s = 0.29 \), can be taken as a constant over the entire range of data; the \(\xi^{3/2} \) dependence of the vibrational relaxation results from a Gaussian approximation to \(F_{i}(q, t) \) with displacements that are intermediate between ballistic and Brownian motion, consistent with fractional Brownian motion.\(^{29}\) Figure 1c shows the resulting distance dependent relaxation time, \(\tau_{s}(d) \), for a wide range of \(\epsilon \) values. The relaxation time nearest the NP interface varies by more than \(5 \) orders of magnitude over the \(\epsilon \) range studied, which can be understood in terms of an alteration of the local free-energy barrier for relaxation. There is a crossover between enhanced and slowed surface relaxation that occurs for \(0.5 < \epsilon < 0.75 \) (Figure 1c, inset), similar to the case of thin films.\(^{31}\) In this range of \(\epsilon \), the NP has almost no effect on dynamics, suggesting a cancelation of enthalpic effects (favorable polymer–NP interactions) and the entropic penalty associated with the decrease of available chain conformations near the surface. The relaxation behavior at large \(\epsilon \) is consistent with the notion of a bound polymer layer, where the interfacial relaxation becomes much slower than the surrounding polymer matrix. In the limit of low \(T \) or large \(\epsilon \), these layers can even appear to be effectively irreversibly adsorbed.

We quantify the scale \(\xi \) over which this surface effect propagates via\(^{50}\)

\[
\ln \tau_{s}(d, \epsilon) = \ln \left[\frac{\tau_{s}(\epsilon)}{\tau_{0}} \right] e^{-d/\xi(\epsilon)} + \ln \tau_{0}
\]

(3)

where \(d = (r - r_{g}) \) is the distance from the NP interface; \(r_{g} = a/(1 + \sqrt{5}) = 4.54\sigma \) is the radius of the sphere that touches the middle of each icosahedral edge (and corresponds to the distance from the NP center where the monomer density first deviates from zero); \(\tau_{0} \) is the asymptotic value of the matrix relaxation time (which is close to that of the pure polymer melt), and \(\tau_{s}(\epsilon) \) is the surface relaxation time. The fit function (eq 3) is shown as solid lines in Figure 1c, from which we find that the interfacial scale \(\xi(\epsilon) \) varies weakly in the range \(\approx 1.5 - 2.5\sigma \) or about 1–3 nm. Thin film experiments suggest that the size of this region may depend on whether dynamics are enhanced or diminished;\(^{15}\) our results for \(\xi \) are not sufficiently precise to distinguish such an effect. Note that the dimensions of the chains in this region are not significantly altered from those of matrix chains, though the interfacial chains tend to align with the NP interface.

Experimentally, the distance dependence of \(F_{i}(q, t) \) is not readily accessible, so we consider how the substantial variations in local relaxation time are reflected in its overall behavior. Figure 2a shows the overall \(F_{i}(q, t) \) for various \(\epsilon \) at a
representative $T = 0.44$. For $\varepsilon \gtrsim 1$, a qualitative change of behavior becomes apparent; namely, an additional relaxation process in $F_i(q, t)$ appears at large t, which is most apparent in the double-log representation. This additional relaxation process occurs due to the “bound” polymer with very slow surface relaxation that emerges at large ε. Figure 2b further shows the emergence of the bound polymer as a function of temperature for $\varepsilon = 1.4$. Evidence of an additional relaxation process in $F_i(q, t)$ was also found in simulations of composites with strongly interacting nanorods. For cases where the bound subgroup appears, the relaxation of $F_i(q, t)$ cannot be described by the two-step relaxation of eq 2. Rather, we can describe the full t dependence of $F_i(q, t)$ by adding a third relaxation process that explicitly defines a time scale τ_b for the bound polymer relaxation,

$$F_i(q, t) = (1 - A) e^{-(t/\tau_b)^{\beta}} + (A - A_b) e^{-(t/\tau_a)^{\alpha}} + A_b e^{-(t/\tau_a)^{\beta}}$$ (4)

where $A_b = N_{\nu}/N$ defines the fraction of bound polymer. In this expression, τ_a defines the relaxation of the polymer matrix, which effectively averages over local polymer relaxation away from the substrate. Both the matrix and bound relaxation processes are described by a stretched exponential with stretching exponents β and β_b (respectively), which, at low T, are in the range 0.4–0.6. The solid lines in Figure 2 show that this three-step relaxation function can account for the relaxation over all time scales, spanning three decades of relaxation of $F_i(q, t)$. The nonergodicity parameter $A \approx 0.75$, independent of T and ε. For $\varepsilon \leq 1$, $A_b = 0$ within the precision of our results; for ε larger than the polymer–polymer interaction strength, the bound fraction, A_b, increases weakly in the range 0.05–0.075. Integrating over the monomer density profile as a function of distance from the NP, this fraction is equivalent to a bound thickness of $\approx 1.5–2\sigma$, similar to the scale that emerges from the fit of eq 3 to the relaxation gradient. Consistent with experiments, τ_b is typically 1–2 orders of magnitude larger than the matrix relaxation time, τ_a (inset of Figure 2b), and the difference grows with increasing ε. The presence of two structural relaxation processes, one corresponding to the surface and one to the bulk polymer, has been reported by several experiments, including those on polymer films near flat surfaces. The substantial difference in the relaxation of matrix and bound polymers causes the overall composite relaxation, defined by $F_i(q, \varepsilon) = A e^{-1} \approx 0.28$, to deviate from the matrix relaxation time τ_a for $\varepsilon > 1$, illustrated in Figure 2c. It is notable that the matrix relaxation becomes nearly constant for $\varepsilon > 1$, while the overall composite relaxation is modestly larger and continues to grow. Thus, T_{μ} as defined by a fixed relaxation time τ of the material as a whole, should increase weakly with polymer–NP attraction ε, even while the matrix relaxation is nearly constant. This is the “cloaking” effect of the bound polymer, and we shall return to this point when we examine a quasi-thermodynamic T_{μ} definition.

We did not anticipate that a continuous gradient of relaxation times (Figure 1c) should give rise to two distinct relaxation processes, though this effect was predicted theoretically. To confirm consistency between the description of a continuous gradient versus effectively distinct relaxations, we checked that the local relaxation averaged over the matrix region (excluding the bound layer) independently recovers the matrix relaxation time τ_a obtained by fitting the overall relaxation to eq 4. In many cases, it may be difficult to measure the relaxation with sufficient precision to estimate the bound polymer thickness and relaxation. Fortunately, the separation of time scales of the bound layer can be utilized to approximate the fraction, A_b, of bound polymer (and hence its thickness) from eq 4. Specifically, if we treat the bound layer as frozen ($\tau_b \gg \tau_a$), then the scattering function at the overall relaxation time τ is

$$F(q, \tau) = A e^{-1} \approx (A - A_b) e^{-(\tau/\tau_a)^{\alpha}} + A_b$$ (5)

where we drop the first term of eq 4 for the fast relaxation, which is essentially zero at time τ. A_b can then be obtained by rearrangement of this expression, which yields

$$A_b = \frac{A e^{1-(\tau/\tau_a)^{\alpha}} - 1}{e^{1-(\tau/\tau_a)^{\beta}} - e} \approx \frac{A}{\alpha} \left(\frac{\tau}{\tau_a}\right)^{\beta} - 1$$ (6)
where the final approximate result is obtained by expanding the exponential to first order, and is only valid assuming that \(t \approx \tau_a \) (i.e., \(1 - (\tau / \tau_a)^{\beta} \ll 1 \), as is the case for our data). Perfect NP cloaking would imply that the matrix relaxation time \(\tau_a \) equals that of the pure melt, which should be a good approximation when \(\epsilon \) is very large. Thus, for strongly interacting NPs, the bound fraction can be estimated directly from the relaxation processes of the pure polymer and the composite.

Next, we wish to understand the consequences of distinct bound and matrix relaxations for commonly used thermodynamic approaches to define \(T_g \). In Figure 3, we show the \(T_g \) dependence of the excess potential energy \(\Delta U(T) = U(T) - U_{glass}(T) \) on heating the glass for the range of polymer–NP interactions considered; note that we include both polymer and NP contributions to \(U \), though only the polymer contribution is significant. Generally speaking, the measurement of \(T_g \) is complicated by the intrinsic spatial heterogeneity of the composite. Our glasses were formed by cooling at a rate of \(10^5 \), and are reheated at the same rate. It is noteworthy that these cooling rates are many orders of magnitude faster than in experiments, and correspondingly the \(T_g \) estimated is substantially higher than would be obtained at an experimental rate. Deep in the glass state (\(T < 0.3 \)), \(U_{glass} \) is well described by a quadratic function, equivalent to a linear temperature dependence of the specific heat. Figure 3 shows that \(\Delta U \) grows rapidly in the vicinity of \(T \approx 0.4 \) at this rate. Analogous to the experimental procedure, we define \(T_g \) by the extrapolation of a linear fit in the transition region to \(\Delta U \rightarrow 0 \). \(T_g \) defined in this way varies only weakly with polymer–NP interaction strength. We also considered alternate definitions of \(T_g \) based on deviations from liquid-like relaxation at high \(T \) or the extremum in specific heat; all these definitions show the same qualitative increase and saturation of \(T_g \) at large \(\epsilon \).

We are now in a position to contrast the behavior of \(T_g \) from thermodynamic and dynamic definitions (Figure 4). Dynamically, \(T_g \) is commonly defined by a fixed relaxation time that corresponds roughly to accessible cooling and heating rates, and experimentally this is typically 100 s. Since our thermodynamic definition of \(T_g \) corresponds to a much faster cooling rate than experiments, we correspondingly define the dynamic \(T_g \) by a shorter time scale, specifically as the temperature where \(\tau = 10^3 \) (in L/J units); our findings do not change qualitatively if we choose a larger time scale. There are multiple implications raised by the \(T_g \) results. First, the \(T_g \) from the quasi-thermodynamic definition is essentially independent of polymer–NP interaction strength for \(\epsilon \gg 1 \) (i.e., greater than polymer–polymer interaction strength). In parallel, the behavior of \(T_g \) defined from the relaxation of the matrix \(\tau_a \) also shows saturation for \(\epsilon \geq 1 \). Indeed, Figures 1 and 2 confirm that this is precisely the region where a distinct bound polymer relaxation develops. Thus, the saturation of \(T_g \) is a consequence of the bound polymer layer cloaking the effects of NP interactions. On the other hand, \(T_g \) defined by the overall composite relaxation \(\tau \) (that includes bound chains) increases monotonically with increasing \(\epsilon \). Apparently, the thermodynamic definition of \(T_g \) is insensitive to the very slowly relaxing bound polymer and only reflects the dynamics of the matrix polymer. Naively, one might expect linear growth of \(T_g \) from the overall composite dynamics with increasing \(\epsilon \); however, the overall dynamical \(T_g \) increases sublinearly when bound polymer develops, since the effect of NP interactions on matrix chains is cloaked. As a result, even for strong polymer–NP interactions, the effect on any of these measures of \(T_g \) is \(\leq 5\% \). Even for larger NP loading fractions (when the fraction of bound polymer must be proportionally larger), the effect on \(T_g \) defined by thermodynamic variations or matrix chain dynamics will be small due to cloaking, consistent with experiments. We have confirmed this effect in simulations at twice the NP concentration of the present data (not shown). The weak \(T_g \)
CONCLUSIONS

Our results show that it is possible to explicitly define a distinct fraction of bound polymer with specified relaxation time. In doing so, we show that typical thermodynamic and dynamic measures of Tp, which focus on the temperature dependence of the dominant fraction of relaxing chains, do not capture the signatures of much slower, strongly interacting surface chains, and hence yield Tg estimates that are effectively only sensitive to the bulk-like polymer matrix relaxations. While we have focused on distinct relaxation due to slowly relaxing chains, it is possible to have a distinct relaxation due to rapidly relaxing chains at an interface, such as occurs in freely standing thin films. As a practical matter, a distinct relaxation due to a rapidly relaxing interface is more challenging to observe, unless the interfacial relaxation is enhanced by many orders of magnitude relative to the interior. In order to see surface effects beyond the dominant fraction of matrix polymers, the analysis of experimental data needs to carefully consider the distribution of relaxation times and corresponding Tg values. For example, recent NMR and dielectric measurements reveal dynamics of both interfacial and bulk-like polymer. These efforts hold the promise to more clearly identify the signatures of the bound polymer layer that forms near the NP surface, or in supported polymer films.

METHODS

Our findings are based on molecular dynamics simulations of a polymer–NP composite examined in several earlier studies. Polymer chains are represented by the Kremer–Grest bead–spring model, in which nonbonded beads interact via a Lennard-Jones (LJ) potential of strength, ϵp, truncated at 2.5 times the bead diameter, σp, to include attractive interactions; bonded beads are connected by a finitely extensible nonlinear elastic (FENE) potential. We consider chains of length 20 beads, below the entanglement molecular mass. A collection of 356 LJ particles are bonded together to form a large icosahedral NP. The outer shell of the icosahedron has 6 LJ particles along the edges, with edge length a = 5.61σ, similar to the chain end-to-end distance. Additional details of the model and simulation parameters can be found in ref 28. We use reduced units where ϵp = σ = 1, though the reduced units can be mapped to physical units relevant to typical polymer materials where σ ≈ 1 nm, time is measured in picoseconds, ϵp ≈ 1 kJ/mol, and Tg ≈ 100 °C; using this conversion, the NP diameter is ≈15 nm. We employ periodic boundary conditions in all three directions using 1 NP and 400 chains, corresponding to a NP volume fraction 0.0426 (≈5% loading). All simulations are performed under isothermal–isobaric conditions with the pressure set to P = 0.1, resulting in simulation box sizes of 20 to 21.2, depending on temperature and polymer–NP interaction strength, ϵ (0.1 ≤ ϵ ≤ 3). We vary temperature in the range 0.4 ≤ T ≤ 0.8. Each system is equilibrated for a minimum of 100 times the polymer matrix relaxation time of the incoherent (or self-intermediate) scattering function. To mimic experimental methods to measure Tg based on thermodynamic variables, we also carry out cooling and reheating simulations using a fixed rate 10−5; the resulting Tg estimate is close to the lowest T of our equilibrium dynamics simulations. Results are averaged over five independent runs at each interaction strength and T.

AUTHOR INFORMATION

Corresponding Author
*E-mail: fsstar@wesleyan.edu.

ORCID
Francis W. Starr: 0000-0002-2895-6595

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Computer time was provided by Wesleyan University. This work was supported in part by NIST Award 70NANB15H282.

REFERENCES

(18) Harton, S. E.; Kumar, S. K.; Yang, H.; Koga, T.; Hicks, K.; Lee, E.; Mijovic, J.; Liu, M.; Vallery, R. S.; Gidley, D. W. Immobilized...

