Internal Structure of Nanoparticle Dimers Linked by DNA

Cheng Chi, Fernando Vargas-Lara, Alexei V. Tkachenko, Francis W. Starr, and Oleg Gang

Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States, and Physics Department, Wesleyan University, Middletown, Connecticut 06459, United States

ABSTRACT We construct nanoparticle dimers linked by DNA. These dimers are basic units in a possible multiscale, hierarchical assembly and serve as a model system to understand DNA-mediated interactions, especially in the nontrivial regime when the nanoparticle and DNA are comparable in their sizes. We examine the structure of nanoparticle dimers in detail by a combination of scattering experiments and molecular simulations. We find that, for a given DNA length, the interparticle separation within the dimer is controlled primarily by the number of linking DNA. We summarize our findings in a simple model that captures the interplay of the number of DNA bridges, their length, the particle’s curvature, and the excluded volume effects. We demonstrate the applicability of the model to our results, without any free parameters. As a consequence, the increase of dimer separation with increasing temperature can be understood as a result of changing the number of connecting DNA.

KEYWORDS: DNA · nanoparticle · self-assembly · SAXS · cluster
deviations from linear dependence are well described by the worm-like chain (WLC) model. When the linkage includes a section of ssDNA—which has an order of magnitude smaller persistence length than dsDNA$^{31–35}$—the flexibility of ssDNA introduces significant complications to understand the dimer separation, especially if the NPs are linked by strands formed by a combination of ssDNA and dsDNA regions. Previous work on NP superlattices with ssDNA linkage14 has shown that the interparticle distance can be used to estimate the end-to-end distance of the DNA chains using the WLC model and assuming the persistence length of ssDNA. As we show below, the interparticle distances of the dimer units are significantly smaller than in the NP superlattice for the same length ssDNA linkers, and using a naive WLC description would require an unreasonable persistence length. The molecular simulations reveal that the origin of this discrepancy is in the geometry of NP links. We use this information to construct a simple analytical model that captures the observed behavior. Our findings demonstrate that interparticle separation is dictated by end-to-end distance of DNA bridges as well as by the interplay of a particle’s curvature and the excluded volume effects.

EXPERIMENTAL DESIGN

The systems of dimers were prepared using a stepwise surface assembly method (Figure 1), in which nanoparticle dimers were assembled in a sequential manner by a deposition of DNA-encoded particles on a layer of either surface-grafted ssDNA or DNA-functionalized particles with complementary recognition, as described below. The micrometer-sized (1–4 μm) streptavidin-coated magnetic beads22,36 were used as surfaces for particle binding and dimer assembly. The fabricated dimers were composed of nanoparticles with an 11 nm gold core (AuNP) covered by a shell of ssDNA. The particles within a dimer were connected by ssDNA linkers with ends that are complementary to the ssDNA on the particle shells. The dimers fabrication procedure is schematically illustrated in Figure 1: the first particle (Au_1), linker DNAs (DNA_L), and the second particles (Au_2) were added step-by-step to a DNA-grafted surface. The assembled dimers were released from the surface by adding strands with a higher affinity to the surface DNAs, as described in the Methods section.

To study the dependence of the particle—particle separation within the dimer as a function of linker length L, we used a series of single-stranded linkers DNA_L (Figure 1, pink strand) as interparticle connectors, where L denotes a number of polythymine bases (T) in a single-stranded linker, not counting recognition ends. We considered $L = 0$, 24, 42, 60, or 75 bases. The ratio of pairs-to-DNA linkers corresponds to the average number of linkages within a dimer, equal to 4 in this study. Our previous work demonstrated that, at this ratio, a surface efficiently blocks an attachment of linkers to a particle’s hemisphere that faces a surface.22 Therefore, most of the interparticle connections are established on the top hemisphere of Au_1, opposite to the surface, allowing for hybridization with DNA_2 located on a lower hemisphere of Au_2. The rigidity of interparticle linkers can be controlled by adding the corresponding complementary strand. In this case, a flexible single-stranded linker becomes a rigid double-strand connector due to the large increase in persistence length of dsDNA relative to ssDNA.

The DLS measurements conducted during the dimer fabrication process indicated a considerable increase of a number-averaged hydrodynamic diameter (D_h) of nanoclusters, from 20 nm for the isolated DNA-coated nanoparticle to about 29 and 37 nm for dimers with L increasing from 0 to 75 bases, respectively (Figure 2a). The detailed studies, discussed in the Results section, relate the D_h increase with a linker length change. We also examined the population of the fabricated clusters, as dried from the solution, by transmission electron microscopy (TEM). We observed that, for the shortest linker $L = 0$, the assembled population consists of about 70% dimers, about 25% of unreacted particles, and 5% multimers ($n \geq 3$), which is in agreement with our previous studies. For the longest linker, $L = 75$, the dimer assembly yield decreased to about 50% due to the reduction of DNA binding efficiency for longer linkers (Supporting Information Figures S1 and S2). We further applied synchrotron-based SAXS methods to investigate the dependence of the interparticle distance in dimers on L, as well as on temperature, by probing a structure factor $S(q)$ of assembled clusters in a solution.
To aid in interpreting the experimental findings, we use a coarse-grained molecular model that mimics the experimental system. The model enables us to examine the molecular detail of the NPs connected by various numbers of DNA strands as a function of the temperature. In this coarse-grained model, each DNA nucleotide consists of two force sites: one represents the sugar–phosphate backbone of a DNA nucleotide, and one carries the A/C/G/T identity of the nitrogenous base (sticky site) (Figure 3). The model has been studied for a variety of systems, and details of the DNA potential can be found in refs 18, 19, 37, and 38, where it has been shown that the model captures the salient features of DNA-driven assembly. The core NP is represented by a single spherically symmetric particle (red spheres in Figure 3). Here, each NP has a diameter $d = 14.80\sigma$, where σ is the size of one nucleotide; distance can be mapped to real units by $\sigma \approx 0.65$ nm (the typical spacing of ssDNA), yielding a NP diameter $d \approx 10$ nm, comparable to the experiments. However, we do not consider the model quantitatively predictive. Each NP has 30 ssDNA attached on its surface. Each ssDNA attached to the NP surface is formed by 16 bases. The outer 6 bases of each chain can hybridize with the linking ssDNA, which is of variable length.

In order to connect the dimers, we add free ssDNA (pink strands of Figure 3) which, like in the experiments, consist of two regions: (i) a central region of variable length L and (ii) ends that are complementary to the ssDNA attached to the NP. The linking region is 6 bases on each end, just like in the ssDNA attached to the NP. To mimic the experimental protocol in which only one hemisphere of the NP has linkers attached, we follow the procedure described in Figure 3. This process can be summarized as follows: two DNA-coated NPs and four linkers (pink strands of Figure 3a) are located at random positions. We randomly select four strands of each facing NP—NP hemisphere (Figure 3b) and hybridize the linkers with the chosen strands (Figure 3c,d). Once the hybridized dimer has formed, we allow the system to equilibrate and evolve without interference. We consider an ensemble of 50 choices for the linkages to evaluate average separations and end-to-end distances.

RESULTS

Fully Bonded Dimers. We first examine the dependence of the dimer separation on the length L of the DNA linker using the DLS method at 26 °C, where DNA strands should be fully linked. The number-averaged hydrodynamic diameter (D_h) corresponds to an average cluster size in the population, and for the given particle system, it is indicative of the interparticle distances. We show the distributions of D_h for representative lengths $L = 0$ and $L = 75$ bases in Figure 2a, which demonstrates a relatively homogeneous cluster population without the presence of large-scale aggregates. From the mean of these distributions, we probe the relationship between the average D_h and L, as shown in Figure 2b. We observe a monotonic, nearly linear growth of D_h from 29 to 37 nm with increasing L from 0 to 75 bases. The DLS measurement probes an average hydrodynamic diameter of a dimer, which we can relate to the interparticle distance within a dimer using a model in which a dimer is approximated by an ellipsoidal object. In this model, the shortest axis of the ellipsoid corresponds to the diameter of the particle combined with the ssDNA shell; the DLS measurements show that this axis has a value of 20 nm, independent of L. The longest axis relates to the sum of the particle diameters and the DNA linker. The model relates the observed change of D_h from 29 to 37 nm, with an increase of interparticle distance (along...
the longer axis of the ellipsoid) from about 17 to 23 nm for Au particles with a core of 11 nm and a DNA shell thickness of about 7 nm. We obtain further internal structural details from SAXS measurements.

The in situ SAXS method provides a direct probe of the internal cluster structure and allows for the determination of interparticle distances of dimers with subnanometer precision. The typical 2D scattering patterns from the dimer samples exhibit a faded ring (Figure 4a,b). We show the 1D scattering intensity profiles $I(q)$ obtained from circularly averaging the 2D scattering patterns and the corresponding structure factors $S(q)$ for studied systems in Figure 4c,d, respectively. The first $S(q)$ peak monotonically shifts toward smaller wavevector values, q, from 0.0276 to 0.0232 Å$^{-1}$ for a corresponding increase of L from 0 to 75 bases, as determined from a Lorentzian fit. This clearly indicates an increase of the interparticle separation with increasing L. The $S(q)$ profiles of dimer clusters in the dilute solution can be described by a dumbbell model:

$$S(q, D) = \frac{\sin(qD)}{2qD} \cdot \frac{1}{2}$$

where D is the center-to-center nanoparticle distance. The surface-to-surface distance $r \approx D - d$, where $d = 11$ nm is the diameter of the NP gold core.

Figure 3. Simulation protocol for dimer formation of two DNA-coated NPs connected by four linkers. (a) Two DNA-coated NPs and four linkers (pink strands) are located at random positions. (b) Four strands of one hemisphere of each NP are randomly selected. (c) Hybridization occurs between the linkers and strands of the left NP. (d) Hybridization with second NP followed by equilibration.

Figure 5 shows the dependence of r on L for dimers linked with flexible ssDNA or rigid dsDNA connectors and compares the r values with those measured for ordered superlattices in which nanoparticles were linked with ssDNA motifs. For dsDNA connectors, we see an approximately linear growth of the interparticle separation r with increasing L. While this behavior is expected when the dsDNA length is sufficiently less than the persistence length of dsDNA ($l_p \approx 50$ nm), our results indicate a linear regime even when the two lengths are comparable. This can be attributed to the DNA alignment due to multilinker interactions. The observed slope corresponds to 0.24 nm per base pair, which is consistent with the previously reported SAXS measurements of nanoclusters and 3D systems. In contrast, the dimers assembled with ssDNA show much weaker dependence of the interparticle separation on the linker length due to the greater linker flexibility. More puzzling is the observation that r is smaller (for the same L) for the case of the dimers connected by ssDNA than for the superlattice system. We note that this deviation cannot be attributed to the difference in the salt concentration between those systems: 0.3 M for superlattice and 0.1 M for dimers. In fact, the reduced salt concentration for dimer systems relative to 3D assemblies should increase (rather than decrease) the persistence length of ssDNA and, correspondingly, increase the NP separations.

To understand the origin of the difference in separation of the dimers as compared to the superlattices, we consider the possibility that the geometry of linkages between NPs may differ between the dimers and the superlattice. To do so, we utilize our simulations to study how the interparticle distance changes when the NPs are connected by exactly one or four linkers. Figure 6 shows the probability distribution function (PDF) of the surface-to-surface distance r of a dimer linked by one or four chains with $L = 10$ bases for the linker. The PDF (Figure 6) shows that r is smaller (on average) when the NPs are connected by more than one linker. If all links were parallel to the dimer axis, we would expect little difference between the
separation of 1 versus 4 linkers. That \(r \) is typically smaller with 4 linkers indicates that the geometry of links is more complex. If links cross each other, or occur closer to the poles, this will constrain the overall separation. The illustration of Figure 6 (inset) compares typical geometries for 1 or 4 links, and Figure S6 contrasts short versus long separation for 4 links, demonstrating that separation is constrained by non-axial links.

In short, the surface-to-surface distance is restricted by the linker with the shortest end-to-end distance, which is typically off the dimer axis. This finding can explain the difference between dimer and superlattice separations. For a NP in the body-centered cubic superlattice, the multibody interactions favor configurations where the linkers are distributed on a particle surface that favors particle-to-particle links that are localized in the \(\pi/2 \) solid angle between neighboring particles. As a consequence, almost all links lie along the axis of the interparticle separation in the superlattice. Such coaxial links will have a separation that is normally longer than off-axis links.

We next develop a theoretical description of how the separation varies with DNA linkage. Our previous experimental studies indicated that the worm-like chain model (WLC),\(^\text{41}\) in which the mean square end-to-end distance of the chain is given by

\[
\langle R^2 \rangle = 2L\sigma l_p - 2l_p^2(1 - e^{-L/\ell_p})
\]

(2)

describes reasonably well the \(L \) dependence of the nearest-neighbor interparticle distances of the superlattice for ssDNA linkers with a persistence length \(l_p = 2.1 \text{ nm} \) (Figure 5). Motivated by this, we test whether our experiments for the dimer systems can be described...
in the same way. To do so, we need the end-to-end
distance of the connecting ssDNA attached to the NP.
We can approximate R_e by subtracting from the surface-
to-surface distance 17.8 nm, which is the surface-to-
surface distance of dimer linked by $L = 0$ connectors
obtained from experimental measurement. Using eq 2, we
find a surprisingly small value $l_p = 0.33$ nm (about
half a base length of ssDNA) for the dimer systems. To
rationalize this, we consider that the simulations have
shown that the chains can be connected at points far
from the axis between particle centers. As a conse-
quence, using the interparticle separation systematically
underestimates the end-to-end distances, result-
ing in an unphysically small value for l_p.
We can quantitatively examine how interparticle
separation underestimates R_e directly in simulations by
comparing l_p evaluated from the actual R_e with that
evaluated from the surface-to-surface distance r. Follow-
ing the procedure used to analyze the experiments, we
obtain a similarly unreasonably small $l_p = 0.7$ bases
using r. In contrast, Figure 7 shows the explicit calcu-
ation of R_e for $L = 0, 10, 20, 30$, and 60 bases with either
one or four linkers connecting NPs; for comparison, we
also show a single free chain of ssDNA. The WLC model
(eq 2) describes the data well, with a physically reason-
able persistence length that is larger than free DNA
($l_p = 3.95$ bases or ≈ 2.5 nm) for NPs connected by 1 linker
($l_p = 5.74$ bases) and by 4 linkers ($l_p = 4.86$ bases).
Thus, the effect of being attached between the NPs
slightly “stretches” the linking chain. Since we cannot
access R_e in experiments and the surface-to-surface
separation r used in the WLC model gives unphysical
values for l_p, we need to develop an improved descrip-
tion that can be verified from simulations and applied
to the experiments.
We propose a simple theoretical model that ac-
counts for the effects of NPs being linked by a

$$
(l_p) = 2 \rho \sigma L_{ss} + \sigma_{ds} \sum_i d_i^2
$$

In this expression, we approximate the ssDNA regions
by the Gaussian model (since $L_{ss} \gg l_p$) and the dsDNA
regions by the rigid—rod model (since $d_i \ll l_p^{dsDNA}$).
Here $\sigma_{ds} \approx 0.35$ nm is the length per base pair in
dsDNA. We can approximate that $(R_{bridge}^2)^{1/2} \approx r$, the
surface-to-surface separation for a single connecting
strand. Figure 8a shows that this simple model roughly
describes the linking by a single chain in our numerical
simulations. Note that the whole dependence on the
linker length, including the initial separation at $L = 0$, is
calculated without any fitting parameters, assuming
the same ssDNA persistence length $l_p = 3.95$ bases
obtained from the simulations of the free ssDNA.
We next extend this model to account for multiple
linkages. When the number of linkers increases, the
competition for the binding sites, together with excluded

![Figure 7. Comparison of the computed end-to-end dis-
tance of free ssDNA (blue) in a reduced unit (bases) with
the ssDNA connecting the dimer via one linker (black) or
four linkers (red). The curves are fits to the worm-chain
model (eq 2), which show that the effective persistence
length relative to a free chain is larger for NPs connected
by one linker and smaller for NPs connected by four linkers.]

![Figure 8. (a) Surface-to-surface separation r as a function of
L for the dimer connected via one linker (black) or four
linkers (red). The symbols represent the simulation data and
the curves the theoretical model proposed in eq 5. (b) Dependence
of r on L from experiments at room tempera-
ture (26 °C) and before melting (35 °C); solid curves repre-
sent the function of r over L estimated from the analytical
model with 1 (blue) and 4 (red) linkers in a dimer.]

According to this model, the mean square end-to-end
distance of the connecting ssDNA attached to the NP
is evaluated from the actual R_e evaluated from the
analytical model.

$$
\left< R_{bridge}^2 \right> = \frac{2 \rho \sigma L_{ss} + \sigma_{ds} \sum_i d_i^2}{(L_p)}
$$

The mean square end-to-end distance of free ssDNA (blue) in a reduced unit (bases) with the ssDNA connecting the dimer via one linker (black) or four linkers (red). The curves are fits to the worm-chain model (eq 2), which show that the effective persistence length relative to a free chain is larger for NPs connected by one linker and smaller for NPs connected by four linkers.

The mean square end-to-end distance of the connecting ssDNA attached to the NP is evaluated from the analytical model.

$$
\left< R_{bridge}^2 \right> = \frac{2 \rho \sigma L_{ss} + \sigma_{ds} \sum_i d_i^2}{(L_p)}
$$

The mean square end-to-end distance of free ssDNA (blue) in a reduced unit (bases) with the ssDNA connecting the dimer via one linker (black) or four linkers (red). The curves are fits to the worm-chain model (eq 2), which show that the effective persistence length relative to a free chain is larger for NPs connected by one linker and smaller for NPs connected by four linkers. In contrast, Figure 7 shows the explicit calculation of R_e for $L = 0, 10, 20, 30$, and 60 bases with either one or four linkers connecting NPs; for comparison, we also show a single free chain of ssDNA. The WLC model (eq 2) describes the data well, with a physically reasonable persistence length that is larger than free DNA ($l_p = 3.95$ bases or ≈ 2.5 nm) for NPs connected by 1 linker ($l_p = 5.74$ bases) and by 4 linkers ($l_p = 4.86$ bases). Thus, the effect of being attached between the NPs slightly “stretches” the linking chain. Since we cannot access R_e in experiments and the surface-to-surface separation r used in the WLC model gives unphysical values for l_p, we need to develop an improved description that can be verified from simulations and applied to the experiments.

We propose a simple theoretical model that ac-
counts for the effects of NPs being linked by a

$$
\left< R_{bridge}^2 \right> = \frac{2 \rho \sigma L_{ss} + \sigma_{ds} \sum_i d_i^2}{(L_p)}
$$

The mean square end-to-end distance of free ssDNA (blue) in a reduced unit (bases) with the ssDNA connecting the dimer via one linker (black) or four linkers (red). The curves are fits to the worm-chain model (eq 2), which show that the effective persistence length relative to a free chain is larger for NPs connected by one linker and smaller for NPs connected by four linkers. In contrast, Figure 7 shows the explicit calculation of R_e for $L = 0, 10, 20, 30$, and 60 bases with either one or four linkers connecting NPs; for comparison, we also show a single free chain of ssDNA. The WLC model (eq 2) describes the data well, with a physically reasonable persistence length that is larger than free DNA ($l_p = 3.95$ bases or ≈ 2.5 nm) for NPs connected by 1 linker ($l_p = 5.74$ bases) and by 4 linkers ($l_p = 4.86$ bases). Thus, the effect of being attached between the NPs slightly “stretches” the linking chain. Since we cannot access R_e in experiments and the surface-to-surface separation r used in the WLC model gives unphysical values for l_p, we need to develop an improved description that can be verified from simulations and applied to the experiments.

We propose a simple theoretical model that ac-
counts for the effects of NPs being linked by a
volume effects, results in greater distribution of the DNA connections over the NP surface. As shown in the Supporting Information, this effect leads to the following negative correction to the interparticle distance:

\[
\Delta r = -(n_l - 1) \left(\frac{d}{N_0} + \frac{L_p L_0}{3\pi d} \right)
\]

Here, \(n_l\) is the number of linkers in a dimer, and \(N_0\) is the number of ssDNAs that are bound to a single NP (20 for simulations and about 50 in the experiment). By combining eqs 3 and 4, the resulting expression for the interparticle separation is obtained:

\[
r = \sqrt{2L_p L_{ss} + \alpha_{ss} \sum_i d_i^2 - (n_l - 1) \left(\frac{d}{N_0} + \frac{L_p L_0}{3\pi d} \right)}
\]

The above correction captures the change in interparticle separation due to the multiple linkers observed in simulations (red curve in Figure 8a). Note that all of the parameters are known, so no fit is involved.

A direct application of the same theory to experimental data does not give a satisfactory fit. However, we found that the experimental data for fully linked dimers (\(n_l = 4\)) can be successfully described (Figure 8b) after a minor modification of the model:

\[
r = \sqrt{2L_p L_{ss} + \alpha_{ss} \sum_i d_i^2 - (n_l - 1) \left(\frac{d}{N_0} + \frac{L_p L_0}{3\pi d} \right)}
\]

Here, the first term represents the root-mean-square size of the ssDNA part of the bridge, the second term is the total contour length of the dsDNA segments, and the last term is the multibridge correction (eq 4). Physically, this variation of the model corresponds to the presence of a modest stretching force that is strong enough to orient dsDNA segments but not too strong to significantly stretch the ssDNA fragments of the chain. As a result, dsDNA segments are aligned along the dimer axis, rather than randomly oriented as assumed in eq 5. The experimental data sufficiently below the melting temperature are well described using this approach for a physically plausible \(L_p\) from 2 to 2.5 nm. The experimental data to test the effect of the number of linkers will be presented when we discuss the temperature dependence.

Theoretical model (eq 6) also works for more complicated systems, such as dimers connected with combined linkers. In this design, the linker is composed of two strands of ssDNA terminated by mutually complementary 15 base segments (as shown in Figure 9a). This design allows for a longer interparticle separation. We observed that for the 15 bp double-stranded part that is between the two single-stranded chains, the dimer separation increases by about 5 nm, which is well captured by our theoretical model (Figure 9b).

Temperature Dependence of Dimer Separation. We next examine the temperature \(T\) dependence of dimer separation via the SAXS technique. We perform a gradual heating of the systems from 26 to, 33 to 35, and 37 and 40 °C. Figure 10a shows the \(T\) dependence on \(r\) obtained by fitting the data using eq 1. All systems exhibit a modest increase of \(r\) with increasing \(T\). However, the relatively large error bars do not allow

\[
\text{Figure 9. (a) Design of two studied systems: (system I) dimers fabricated using a single-stranded linker, and (system II) dimers fabricated using a combined linker. (b) Surface-to-surface distance } \(r\) \text{ as a function of linker length } L. \text{ For the system II, } L = M + N. \text{ Red curves represent the function of } r \text{ over } L \text{ for corresponding systems estimated from theoretical model at } n = 4, L_p = 2.2 \text{ nm.}
\]

\[
\text{Figure 10. Surface-to-surface separation } r \text{ as a function of temperature for various } L \text{ from experiments (a) and simulations (b). The uncertainties of experiments are estimated from multiple measurements and SAXS peak fitting. Like the experiments, the interparticle distance increases with increasing } T. \text{ (c) Average number of linkers } (n_l) \text{ connecting NP as a function of } T \text{ from simulations, demonstrating that the change in } r \text{ is caused by the reducing number of connecting linkers.}
\]
Figure 11. Surface-to-surface separation r as a parametric function of the mean number of links $\langle n_L \rangle$. The symbols represent the data and the lines the theoretical model proposed in eq 5.

is directly seen by plotting parametrically the dimer separation r as a function of $\langle n_L \rangle$ (Figure 11). In doing so, we eliminate the explicit T dependence of the separation and, consequently, can test the theoretical model proposed in eq 5, generalizing the expression to non-integer values of the number of linkers. Figure 11 shows excellent agreement between the simulation data and the theoretical predictions (without any adjustable parameters). This verifies the predicted dependence on the number of linkers.

Since we now know that increasing temperature has the effect of decreasing the number of links, we can use experimental data from relatively low or high temperature as a way to test the predictions of the model for dimers connected by single or multiple linkers (eq 6), respectively. As shown in Figure 8b, the measured $r(T)$ for all systems is within bounds determined from the analytical model for a single linker connection ($n = 1$) and four linker connections ($n = 4$). Near the melting point, the number of linkers per dimer decreases, and the interparticle separation should approach the $n = 1$ value just before dimer melting occurs.

CONCLUSION

We utilized synchrotron-based small-angle X-ray scattering to characterize the interparticle distance of a dimer of gold nanoparticles linked with DNA chains and interpreted the results with the aid of molecular modeling, leading to the development of an analytical description. We showed that, in the regime when nanoparticles and DNA chains are comparable in size, the separation distance between the two NPs is directly related to the number of links connecting NPs. In the regime when particles and links are comparable in size, the location of links can significantly deviate from the axis between the particles. As a result, the intradimer separation is constrained by off-axis links that yield smaller NP separation than expected for a single chain connecting NPs. We combine these observations in a theoretical model that describes both our numerical and experimental data. The effect of temperature is thus understood as a consequence of changing the mean number of links between NPs. Our findings might play an important role in designing novel materials based on nanoparticles and polymers.

METHODS

The fabrication procedure of dimers is shown in Figure 1. The first particle, Au_1, was functionalized with a mixture of two types of DNA, denoted as DNA_1 and DNA_1N. These two types of DNA serve the purposes of (i) recognition to surface-grafted DNA (DNA_1NS) and (ii) for the consequent attachment of linkers (DNA_L). Au_1 were deposited on surface functionalized with DNA_1NS due to 15 bases complementary of DNA_1NS and DNA_1N. Following the deposition of the first particle layer, a 4-fold excess of linkers DNA_L relatively to surface-attached particles Au_1 was added in order to hybridize with DNA_1 through 15 complementarity bases. At the third step, particles Au_2, functionalized with one type of DNA only (denoted as DNA_2), which is complementary to 3’-end of linker DNA_L, were added in a ratio 1:1 relative to Au_1. This resulted in a formation of surface-immobilized dimers due to the hybridization of linkers between Au_1 and Au_2 particles which are linked by 4 DNA_L on average (Table 1). Finally, the assembled dimers were released from the surface using a liberating strand (DNA_F) which has a higher affinity to the surface-grafted DNA_1NS than DNA_1N, due to 18 complementarity bases.

...
Consequently, particles were dispersed in the 0.1 M PBS (10 nM phosphate buffer, 0.1 M NaCl, pH = 7.1).

We applied synchrotron-based SAXS measurements (beamline X9 at the National Synchrotron Light Source) to probe an internal dimer structure. The 2D scattering data were collected with a charge-coupled device area detector (MAR CCD) at wavelength $\lambda = 0.8856$ Å. The SAXS measurements provide information on the structure factor $S(q)$ of clusters in a solution. The 1D intensity profiles, $I(q)$, were obtained by azimuthally integrating the 2D SAXS pattern. The background-corrected intensity can be represented in a simple form $I(q) = S(q)P(q)$, where $P(q)$ is the form factor of free particles measured from the solution containing the equimolar mixture of free particles. The center-to-center distances between gold nanoparticles within the dimer were obtained from $S(q)$ by accounting for the size of individual AuNPs determined from the separate TEM and SAXS measurements. SAXS measurements were conducted for the samples in 0.1 M PBS buffer placed in a 1 mm quartz capillary over the temperature range of 26 to 40 °C with 20 s exposure time.

Conflict of Interest: The authors declare no competing financial interest.

Acknowledgment. Research was carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. F.V.-L. and F.W.S. thank the NSF for support from the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. F.V.-L. and F.W.S. thank the NSF for support from the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.

Supporting Information Available: Detailed information regarding dimer’s characterization and theoretical description. This material is available free of charge via the Internet at http://pubs.acs.org.

REFERENCES AND NOTES

